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Myoelectric or Force control?
A comparative study on a soft arm exosuit
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Abstract—The intention-detection strategy used to drive an
exosuit is fundamental to evaluate the effectiveness and ac-
ceptability of the device. Yet, current literature on wearable
soft robotics lacks evidence on the comparative performance of
different control approaches for online intention-detection. In
the present work, we compare two different and complementary
controllers on a wearable robotic suit, previously formulated
and tested by our group: a model-based myoelectric control
(myoprocessor), which estimates the joint torque from the ac-
tivation of target muscles, and a force control that estimates
human torques using an inverse dynamics model (dynamic arm).
We test them on a cohort of healthy participants performing
tasks replicating functional activities of daily living involving a
wide range of dynamic movements. Our results suggest that both
controllers are robust and effective in detecting human-motor
interaction, and show comparable performance for augmenting
muscular activity. In particular, the biceps brachii activity was
reduced by up to 74% under the assistance of the dynamic arm
and up to 47% under the myoprocessor, compared to a no-suit
condition. However, the myoprocessor outperformed the dynamic
arm in promptness and assistance during movements that involve
high dynamics: the exosuit work normalized with respect to
the overall work was 68.84 ± 3.81% when it was ran by the
myoprocessor, compared to 45.29 ± 7.71% during the dynamic
arm condition. The reliability and accuracy of motor intention
detection strategies in wearable device is paramount for both
the efficacy and acceptability of this technology. In the present
paper, we offer a detailed analysis of the two most widely used
control approaches, trying to highlight their intrinsic structural
differences and to discuss their different and complementary
performance.

Index Terms—Human-machine interfaces; Wearable Robots;
Modeling, Control and Learning for Soft Robots; Control Archi-
tectures and Programming

I. INTRODUCTION

THe first-ever engineered exoskeleton was developed with
the idea of ”...combining man and machine into an

intimate symbiotic unit that will perform as one wedded
system.” [1]. In their work, Mosher and colleagues explicitly
acknowledged the unparalleled performance of the nervous
system in continuously integrating sensory information and
processing it to make informed decisions about future actions.
Complementing human cognition with machine mechanical
power would have resulted in a mighty entity. Notwithstand-
ing their visionary prospective, the effort to match human
biomechanics complexity with machine ruggedness had been
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Fig. 1. Untethered elbow exosuit. The device used in this study was designed
to assist elbow flexion. The exosuit consisted of a wearable orthosis and a
back protector, housing a motor, batteries, sensors and electronics. A force
sensor (1) and two IMU (2) sensors were used to measure the interaction
force and the arm kinematics, respectively. The back protector housed the
force sensor amplifier (3), the actuation stage (4), the embedded controller
and motor driver (5) and two battery packs (6,7).

underestimated, and is still one of the greatest challenges in
wearable robotics [2].

Pons nicely pointed out that the human-robot interface
(HRI) consists of processes of two different natures [3]: (1)
the physical interaction between the device and its user (pHRI)
and (2) the exchange of cognitive information between the
human and the robot (cHRI).

The recent introduction in robotics of soft materials and
exosuits to transfer forces to the human body has allowed
a significant improvement of the pHRI [4], solving issues
limiting rigid exoskeletons efficacy such as joint misalignment
[5] and addition of substantial inertia to the human limbs.
Exosuits have been used to achieve unprecedented levels of
walking and running economy [6] and accessible assistance to
people with neuromuscular disorders [7].

The cHRI has a higher level of complexity, involving
the bidirectional communication between user’s mind and
machine, achievable only by a reliable human-intention detec-
tion, and from robot to human, typically achieved via visual,
auditory or haptic feedback. Different modalities of detecting
user’s intention specifically influence the controller robustness
and the assistance efficacy.

In absence of invasive interfaces that record signals from
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neural implants, the widely used strategy in human-machine
interaction, is to detect forces or movements acting between
wearer and device.

The paradigms that use this approach are called mechani-
cally intrinsic [8], as they relay on mechanical manifestations
of human movements, acquired by sensors on the robot itself;
these data are successively fed back into a biomechanical
model of the assisted limb to provide the resulting computation
to the actuation stage. Common strategies include sensing
joint positions, velocities or interaction forces to initiate or
modulate the assistance. Mechanically intrinsic controllers are
well studied and robust. However, they suffer from two major
limitations: (1) being triggered by the outcomes of human
intention, they suffer from a time lag between the initiation
and detection of movement, with a consequent upper bound
on the quality of assistance; (2) when designing a control
law for mechanically intrinsic controllers, it is required to
make assumptions about the interaction dynamics between the
robot and the environment, if such assumptions are wrong, the
controller will not perform as intended. A typical example is
a controller for gravity-compensation of the arm: the control
laws will not compensate for the mass of an object picked up
by the human agent.

A solution to these restrictions is possible if we tap into
the human nervous system: the control signal generated by
the brain to activate muscles, precedes the movement and
continuously adapts to environmental dynamics, reflecting the
remarkable sensing and planning capabilities of our nervous
system. Proportional myoelectric controllers, for example,
sense efferent control potentials to provide assistive forces that
are proportional to the user’s muscle recruitment [9], [10],
[11], [12], [13]. Since electromyographic signals (EMG) are
produced before the initiation of the movement [14], the robot
is more likely to match the movement timing of the user. Even
better performance is achieved combining EMG detection
with an accurate model of the musculoskeletal geometry and
subject-specific activation dynamics, called ”myoprocessor”
[15]. It has been demonstrated that the choice of a myoproces-
sor results in the most robust and reliable solution across all
the EMG-driven control frameworks, as elegantly discussed
by Sartori and Sawicki [16]. A proportional EMG controller,
solely relying on processed EMG signals, does not capture
complex aspects related to the dynamics of human biome-
chanics, since it neglects the muscle geometry contribution and
EMG to muscle activation conversion. In [17] Sartori showed
that a myoprocessor, relying on muscular geometry as well
as activation levels, is able to reject mechanically induced
movement artefacts in the EMG signals, such as arm positions,
and motion artifact from electrodes and cables.

Despite these theoretical advantages, there is lack of empir-
ical evidence on how humans respond to different intention-
detection strategies, implemented on similar or comparable
devices and across a wide range of motion dynamics [18]. This
makes it hard to speculate if an EMG-based approach would
result in a more effective synchronization with the human
counterpart, than a mechanically intrinsic paradigm. A work
in this direction has been done by Cain and colleagues [19].
The authors showed that a proportional myoelectric controller,

implemented on a powered ankle-foot orthosis for walking as-
sistance, results in larger reductions of muscular activation and
more physiological gait kinematics than a footswitch-based
one. However, the study compared a proportional approach,
where the amplitude of the muscular activity modulated the
delivered assistance, with a discrete one, where the switch
was used to trigger a constant actuation force. Moreover, it is
unclear if these results can be generalized to the upper limbs,
where the variability of movements and tasks manifold are
wider and more unpredictable than in walking.

In our recent work, we proposed, for the first time, an EMG-
based approach to control a tendon-driven exosuit through a
musculoskeletal model that mapped EMG activation patterns
and joint kinematics into joint torque [20]. In a separate and
previous contribution, a similar device was also tested with
a mechanically intrinsic controller that sensed the interaction
force at the pHRI to initiate movement and compensate for
gravitational forces [21], [22].

In this work, we propose a comparison between controllers
that represent the two main approaches for intention-detection
in upper limb wearable robotics: a mechanically intrinsic
controller to compensate for inertial and gravity-dependent
dynamics (dynamic arm module) and a model-based EMG
controller (myoprocessor module). Our objective is to highlight
the pros and cons of each approach and explore the perfor-
mance of the controllers across different motion dynamics.

We hypothesize that the myoprocessor, by tapping into
the information carried by the efferent motor commands,
will result in better-timed assistive profiles and, unlike the
mechanically-intrinsic one, will adapt to changing external
dynamics. On the other side, we expect more stability when
the exosuit is driven by the dynamic arm controller, since we
avoid the variability given by the inclusion of biosignals in
the loop. To achieve this goal, we evaluated the performance
of both controllers on a sample of eight participants while
they performed functional tasks, representative of daily living
activities, and ballistic tasks (throwing/catching a ball), where
the promptness of the assistance plays a prominent role.

II. HARDWARE AND SETUP

We tested the performance of both real-time control frame-
works using our latest fully embedded elbow exosuit (Fig. 1).
The device consisted of a textile harness derived from a passive
orthosis (Sporlastic Neurolux II, Nürtingen, Germany). The
actuation stage, the control architecture and the battery pack
were attached to a customized support placed on a motorbike
back protector (Zandoná Evo X6, Treviso, Italy). The actuation
stage consisted of a brushless DC motor (Maxon EC-i 40,
70W, Sachseln, Switzerland), in series with a planetary gear-
head (Maxon GP32, �32mm 51 : 1, Sachseln, Switzerland)
driving a pulley (�28mm) around which the suit tendon was
wound. The motor axis angular position was measured with
an incremental encoder (Scancon 2RMHF, 5000 pulses/rev,
Hillerød, Denmark).

A Bowden cable was used to transfer mechanical power,
from the actuation to the suit. Torque was provided by the suit
to the wearer via two anchor points, located on the proximal
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Fig. 2. Real-time control frameworks and calibration pipeline. (a) We measured the performance of two different high-level control algorithms: the myoprocessor
module (red block) estimated the elbow joint torque generated by the muscles through an accurate musculoskeletal model; the dynamic arm module (blue
block) extracted the arm dynamics effort via inverse dynamics approach, by means of IMUs kinematics and orientation. The model reference torque τr was
compared to the human-robot interaction torque τi acquired from the force sensor placed at the distal anchor point. The torque tracking error er was the
low-level controller input. This error was then converted into a motor velocity, delivering assistance to the wearer. (b) The high-level controllers calibration
consisted of three steps: maximum voluntary contraction trials for EMG normalization, a static pose acquisition that extracted the subject’s anthropometry
and the dynamic calibration for the parameters tuning of the myoprocessor.

and distal sides of the elbow joint. The Bowden cable sheath
(Shimano SLR, �5mm, Sakai, Ōsaka, Japan) was attached to
the proximal anchor point, while the tendon (Black Braided
Kevlar Fiber, KT5703-06, 2.2 kN max load, Loma Linda CA,
USA) was connected to a force sensor (Futek, FSH04416,
Irvine CA, USA) anchored to the distal anchor point. The
device also features two inertial measurement units (IMUs,
Bosch, BNO055, Gerlingen, Germany), fixed on the orthosis
with velcro straps, at the level of the humerus and the ulna to
detect the 3D kinematics and orientation of the assisted arm.
The overall weight of the device is 3.5 kg and the battery
(3300mA) life is ≈16 h of continuous use.

A multi-channel and wireless surface EMG system (Delsys
Trigno, Natick MA, USA) was used to monitor six muscles on
the right arm: the long head of biceps brachii, the long head
of triceps brachii, anterior and posterior parts of the deltoid,
the trapezius and the pectoralis major: electrodes placement
followed the SENIAM guidelines [23]. The envelope of the
EMG signals was directly extracted from the sensor built-
in hardware filter (step 1: Butterworth bandpass, 2 pole high
pass corner at 20Hz and 4 pole low pass corner at 450Hz;
step 2: root mean square envelope on a 100ms window), and
successively normalized by the individual maximum voluntary
contraction (MVC).

We used an Arduino Mega 2560 (Arduino, Ivrea, Italy) as
embedded acquisition board placed on the back protector to
acquire in real-time the force sensor and the IMUs signals
and to send the control command to the motor drive, with
a sampling frequency of 1 kHz. The exosuit actuation was
driven by a dedicated servo controller (EPOS2 50/5, Maxon,
Sachseln, Switzerland) closing an internal feedforward + feed-

back velocity loop at 1 kHz. The real-time control and data
logging was implemented in a MATLAB/Simulink application
(MathWorks, Natick, Massachusetts MA, USA), and ran on an
embedded computer at 500Hz (NVIDIA Jetson Nano, Santa
Clara CA, USA), that also took care of the EMG acquisition,
via a TCP/IP protocol. The Jetson Nano communicated with
the Arduino via a serial bus.

We estimated the human kinematics by recording 12 reflec-
tive markers positioned on anatomical landmarks (Qualisys
5+, Göteborg, Sweden): third metacarpus, ulnar styloid, radial
styloid, forearm front, forearm back, lateral epicondyle, medial
epicondyle, upper arm front, upper arm back, upperarm lateral,
acromion and processus spinosus 7th cervical vertebra: the
motion capture system ran on a dedicated desktop workstation
at 150Hz.

III. REAL-TIME CONTROLLERS

In the present work we specifically aimed at comparing
the performance of the two main different state of the art
controllers, typically used in wearable robotics. The differ-
ence between the two controllers consisted of the “modules”
(Fig. 2a) used for detection of the user’s motion intention and
computation of the assistance:

– the myoprocessor module merges EMG activity to esti-
mated musculoskeleteal dynamics to compute the elbow
torque;

– the dynamic arm module relied only on a subject specific
upper limb biomechanical model to estimate the same
torque at the elbow.

For sake of clarity, the aforementioned modules worked non
synchronously, meaning that one module excluded the other
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while working and computing the assistance, hence they were
tested separately and across distinct trials.

As depicted in Fig. 2a, the architecture comprised a high-
level controller, including either one of the two modules
(selected prior test initiation) which estimated the assistive ref-
erence torque (τr). A low-level admittance controller, common
to both the modules, was implemented to track the reference
signal.

A. High-level controller: myoprocessor module

The myoprocessor module, already presented in [24], used
a musculoskeletal model to compute elbow flexion-extension
torque as a function of the muscle activation level and joint
angle. Muscular activation was measured with two EMG
channels on the biceps brachii and the triceps brachii while
joint angles were estimated from the IMUs. The myoprocessor
comprised four core modules, as described in details as
follows.

1) The activation dynamics: block converts the normalized
EMG input of the j-muscle, uj , into muscle activation aj via
a non-linear transfer function [25]:

aj(t) =
eAjuj(t) − 1

eAj − 1
. (1)

where Aj is a muscle-dependent shape factor that models the
fiber recruitment (i.e. EMG-to-activation coefficient).

2) The Muscle-Tendon Unit (MTU) kinematics: models the
3D musculoskeletal geometry (i.e. muscle tendon length lmt

and moment arm rmt) of the human arm extracted from
Opensim models [26] by means of a set of multidimensional
cubic B-splines [27].

3) The MTU dynamics: module estimates the muscle force
starting from the Activation dynamics and MTU kinematics
outputs. The force Fmt

j (t) produced by the j-muscle was
obtained by the equation:

Fmt
j (t) = Fmax

j [aj(t)fl(t)fv(t) + fp(t)] · cosφj(t) (2)

where Fmax
j is the maximum isometric force [28], aj(t)

the muscle activation, fl(t), fv(t) and fp(t) are respectively
the force-length relationship, the force-velocity relationship
and the parallel passive elastic muscle force. These functions
depend on the muscle fiber length and muscle fiber contraction
velocity normalized with respect to the optimal fiber length
lm0 . At last, φj was the pennation angle of the fibers. The
force-length (fl(t)) and the force-velocity (fv(t)) relationships
account for the contractile element of the muscle: the first
one is represented by a Gaussian function that describes the
dependence of the steady-state isometric force of a muscle as a
function of muscle length [29]. The force-velocity relationship
(fv(t)) is the characteristic dynamic response of the muscle
fibers during the contraction [30]. The parallel passive elastic
muscle force (fp(t)) describes the behaviour of muscular pas-
sive elements and characterized by an exponential relationship,
which allows to compute the passive forces regardless of
fibre length, and thus accounting for non-zero passive forces
[31]. Tendons were assumed to be non-deformable, i.e. with a
constant length lt(t) = lts and the muscle fiber length during
movements is always equal to lm(t) = lmt(t)− lts.

4) Torque computation: The last core module combined
the muscle forces Fmt(t) and the vector Jmt(t) of muscle
moment arms rmt to estimate the reference torque at the
elbow τr(t): this value is the reference input for the low-level
controller.

τr(t) = Jmt(t)T · Fmt(t) (3)

B. High-level controller: dynamic arm module

The second control framework, alternative to the myopro-
cessor, computes the reference torque τr(t) from a biome-
chanical model of the arm, accounting for the 3D orientation
of the joints (i.e. elbow and shoulder) and including inertial,
centrifugal, Coriolis and gravitational forces. We adopted the
classical equation of motion to compute torque at the joints
τh and used the component at the elbow to close the loop of
the controller [32]:

τh(q(t)) =M(q(t))q̈(t) + C(q(t), q̇(t)) +G(q(t)), (4)

where q, q̇ and q̈ represent the vectors of elbow and shoulder
position, velocity and acceleration, respectively, obtained by
means of the IMUs signals. The inertial and mass properties
of the arm are described by the matrix M(q(t)), C(q(t), q̇(t))
is the vector of Coriolis and centrifugal forces and G(q(t)) is
the vector of gravitational force, extracted from the Opensim
musculoskeletal model [26] and scaled on subject anthropom-
etry. The reference torque τr is the element of the vector τh

corresponding to the elbow flexion and extension.

C. Low-level controller: torque and velocity loops

The reference torque τr(t), estimated from the high-level
controller, was used as input signal for the low-level admit-
tance controller. The admittance controller compared τr(t)
with the interaction torque, τi(t) estimated from the force
sensor recording the tendon tension [24]. The resulting instan-
taneous torque tracking error er = τr−τi was transformed into
a desired angular velocity, ωr, through a PID-like admittance
block of the form:

Y (s) =
ωr

er
=
Kp +Ki · s−1

1 +Kd · s
(5)

where the Kp, Ki and Kd gains were experimentally tuned,
using the Ziegler-Nichols heuristic method, prior initiation of
the study and then left unchanged for all study participants.

Lastly, an inner velocity loop was included for compensa-
tion of the intrinsic non linear exosuit dynamics (backlash,
Coulomb and viscous friction) and was tuned to provide
a stiff, under-damped response, through a Nichols-Ziegler
method [33]. Feed-forward acceleration and velocity terms
were added to the feedback, to improve the tracking accuracy
and bandwidth of the velocity loop.

D. High-level controllers calibration

Contrarily to the low-level, the high-level controller was
subject specific: each participant was enrolled in a calibra-
tion phase prior starting the experiment, to tune both high-
level modules. It is worth mentioning that calibration of the
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Fig. 3. Functional tasks. (a) Human-exosuit response to a step-like external perturbation (i.e. Step Response task). (b) Catch and throw task with one hand.
(c) Pick and place task, consisting in grasping and moving objects of different mass to specific target locations.

controllers involved only parameters that were dependent on
the participants’ anthropometry and physiology, on which
both modules rely to evaluate the reference torque τr(t). The
calibration step was performed without wearing the exosuit.

The calibration procedure (Fig. 2b) consisted of three differ-
ent phases: (i) maximum voluntary contraction trials (MVC),
(ii) a static pose acquisition, and (iii) a dynamic calibration.

The MVC trials was a series of isometric contractions for
each muscle group, used for the EMG-signal normalization
and post processing. The static pose consisted of a 30 s rest in
the standard anatomical position (upright, arm extended along
the trunk) during which we monitored the position of the
markers on the anatomical landmarks defined in Section II.
We used the open-source software OpenSim to linearly scale
a generic musculoskeletal model [26], and match each par-
ticipant’s arm anthropometry, which was successively used
to estimate the muscle-tendon geometry of the myoprocessor
(i.e. muscle-tendon lengths and moment arms) and bones
geometry of the dynamic arm modules (i.e. bone lengths, mass,
inertial, Coriolis matrices and centre of mass). This model was
common to both controllers during the experiments and was
further used for post-processing.

The dynamic calibration has been performed to tune only
the myoprocessor, where baseline EMG data at rest was
recorded with the elbow fully extended in vertical position
(0◦) for 20 s. Successively, subjects followed elbow flex-
ion/extension reference trajectories, shown on a screen through
a phantom arm moving according to the following periodic
waveform.

θd(t) = A0 +A sin(2πf(t)t) (6)

with A0 = A = 45◦, and f(t) being a step-wise varying
frequency in increasing steps of 0.05Hz, between 0.05Hz and
0.5Hz: values were chosen as they correspond to movements
with a peak velocity between 12.5◦/s and 150◦/s, respectively,
equivalent to 10% and 120% of the speed of the elbow in
daily tasks [34]. Each frequency of motion was held for 20 s.
During this phase, we recorded the marker positions and used
them to extract the human elbow torque τid(t) through the
OpenSim inverse dynamics tool. The recorded EMG signals
and joint angles from the IMUs were then used to calibrate

the myoprocessor: by using the simulated annealing algorithm
[35] we minimized the calibration function fcal(t)

fcal(t) =
1

N

N∑
t=1

(τid(t)− τr(t))
2 (7)

where τr(t) was the reference torque estimated by the myopro-
cessor. Through this calibration phase, we optimized the val-
ues of the internal model parameters related to muscle-tendon
physiology: optimal fiber length lm0 , tendon slack length lts,
maximal isometric force Fmax and EMG-to-activation coef-
ficients A. The fitting of the parameters was performed by
setting the physiological bounds, following the procedure and
guidelines described in [36].

IV. EXPERIMENTS

Eight healthy participants were enrolled in the experiment
(4 males/4 females, age 26.88±3.72 years, mean ± SD, body
weight 79.63±16.18 kg and height 1.79±0.10m). Inclusion
criteria were based on no evidence or known history of mus-
culoskeletal or neurological diseases, and exhibiting normal
joint range of motion and muscle strength.

All experimental procedures were carried out in accordance
with the Declaration of Helsinki on research involving hu-
man subjects and were approved by the IRB of Heidelberg
University (Nr. S-311/2020). All subjects provided explicit
written consent to participate in the study. The study consisted
in repeated-measurements, where participants, wearing the
exosuit, performed three functional tasks in different condi-
tions with and without exosuit assistance (Fig. 3). Each task
was performed in all of the three following conditions: “no
assistance”, where the exosuit was worn but unpowered; “my-
oprocessor”, where the exosuit was powered and controlled
using the EMG-driven musculoskeletal model; “dynamic arm”,
where the exosuit was powered and controlled using the dy-
namic model of the human arm. The experiment was designed
to test the controllers for response time, rejection of external
disturbances and adaptation to varying external dynamics. The
tasks were named as follows:

A. Step response;
B. Catch and throw;
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C. Pick and place.
The whole experiment required three days: the calibration

procedure was performed on the first day while the tasks were
carried out during the other two days, except for the MVC trial
that was executed prior each experimental session. The order
of the tasks and conditions was randomized across subjects and
days; to avoid onset of muscular fatigue, participants rested
for 10min between the tasks. Before starting, participants
performed a 5min familiarisation phase with both control ap-
proaches to get accustomed to use the device, performing free
movements. Subjects had no information on which controller
the device was used during the task with the exosuit (i.e.
myoprocessor, dynamic arm), but were only instructed on how
to perform the task.

A. Step response

The step response task (Fig. 3a) was designed to evaluate
response time and stability of the human-exosuit system to a
sudden unexpected external perturbation. Instructed to hold the
elbow in a 90◦ flexion, participants were blindfolded in order
to prevent any anticipatory action and keep perturbation un-
predictable. A medicine ball of 1.36 kg of mass and � 10 cm
was attached to the participants’ wrist by a non extendable
nylon cable. The task initiated once the experimenter released
the ball, letting it fall under the effect of gravity, to generate a
quasi instantaneous load application at the subject’s limb. The
sequence was repeated 5 times on each participant.

B. Catch and throw

During the catch and throw task (Fig. 3b), participants
interacted with a human assistant to perform an exercise
consisting of catching and throwing a medicine ball (1.36 kg of
mass and � 10 cm). The goal was to evaluate the performance
of the controllers during a highly dynamic task in a controlled
environment: distance between participant and collaborator
was 2m, and a third experimenter provided a verbal cue to
initiate the test. The human assistant threw the ball to the
subject, who, after catching it, had to extend the elbow and
wait for a second verbal cue to throw back the ball. The
sequence was repeated three times in the three conditions: (1)
no assistance, in which the exosuit cable was slack and the
motor turned off, and with the exosuit assisting its user using
the (2) dynamic arm module and (3) myoprocessor module
separately.

C. Pick and place

Participants had to pick and place items (Fig. 3c) in order
to test the adaptation of the controllers to variable load
conditions. We used three different precision weights for
the experiment: 200 g, 500 g and 1000 g. Participants waited
for an external audio trigger before moving the weight to
the corresponding target location: no kinematic nor timing
constraints were specified to complete the task. Each trial
comprised of a sequence of three loads, repeated four times
for a total of 12 movements.

V. DATA ANALYSIS

Offline analysis was carried out to evaluate the performance
of the dynamic arm controller and myoprocessor, across the
different tasks, compared to the no assistance condition. Out-
come measures included response time, disturbance rejection
and adaptation to varying external dynamics.

A. Response time and disturbance rejection

The step response task was used to estimate the system
response time and disturbance rejection. The initiation of the
physiological reaction to the sudden force application, due to
the falling load, was obtained by calculating the EMG onset,
as the norm of the derivative of the biceps activity greater than
10 % of its peak value (i.e. velocity threshold onset [37]). This
was compared with the recorded force signals from the force
sensor, extracting two performance indexes:

– System response: the time difference between the EMG
onset and the first negative peak of the interaction torque
τi(t), which corresponds to mechanical intervention by
the exosuit actuation to counteract the force application.

– Settling time: the amount of time elapsed from the EMG
onset and the first time point after which the value of the
interaction torque (τi(t)) settles in an range of ±5% of
its final value.

We also evaluated the performance of the two controllers in
terms of promptness of assistance intervention, by calculating
the computational delay occurring between the EMG bursts
recorded from the electrode and the exosuit mechanical action
(”Actuation”, Fig. 2b) in response to the subject’s movement
intention. Assuming that physiological muscle contraction is
followed by the mechanical assistance from the exosuit, the
computational delay was detected by looking at the cross-
covariance [38] between the biceps brachii activity and the
output of the low-level controller velocity command to the
motor drive actuation (i.e. ”motor actuation command”).

B. Power consumption

The catch and throw task provides information on con-
trollers performance during ballistic movements. We computed
the exosuit mechanical power during the throw phase of the
catch and throw task (Pexo) by using the relationship

Pexo = Fcable · vcable (8)

where Fcable is the cable tension force recorded by the force
sensor and vcable is the cable velocity estimated from the
motor encoder rotational speed, the gear ratio of its planetary
gear-head and the diameter of the pulley. For simplicity, we
assumed that the torque from the exosuit was transmitted
efficiently to the elbow joint and the power loss due to the
deformation of the anchor points was negligible. The total
power at the elbow was computed according the formula:

Ptotal = τid · ωelbow (9)

where τid is the torque at the elbow level extracted from
the Opensim inverse dynamics tool and ωelbow is the elbow
angular velocity computed via Opensim inverse kinematics



IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021 7

tool. Both signals were estimated based of the markers data.
The contribution from the exosuit wearer to the power Phuman

was then estimated as:

Phuman = Ptotal − Pexo (10)

The work made by each single actor was computed by
integrating power across the time. The exosuit and human
works were then normalized with respect to the corresponding
total work.

C. Adaptation to external dynamics

The second part of the catch and throw analysis targeted the
effects of assistance on human physiological motion: to such
an extent, we extracted joints inverse kinematics by feeding
each subject-specific Opensim model with the collected mark-
ers data. Shoulder and elbow range of motion and the peak
velocities across conditions were compared (no assistance,
dynamic arm and myoprocessor).

During both the catch and throw and pick and place tests,
offline computation of the EMG root mean square (RMS)
experiment was used as index of muscles activation level.

The pick and place task was also useful to evaluate the
ability of the two control paradigms to adapt to changing
external dynamics. The outcome measure consisted of a com-
parison between the interaction torque (τi(t)) measured by
the force sensor and the biological human torque (τid(t)),
extracted in the no assistance condition using the Opensim
inverse dynamics toolkit and the markers data.

D. Statistical analysis

Data normality distribution was assessed using Shapiro-
Wilk test, and sphericity condition for repeated measures anal-
yses of variance (rANOVA) was evaluated using the Mauchly
test. A repeated measures ANOVA test was used to examine
the effects, on the dependent variables (rmsct) of the type
of assistance, using as within-subject factor the rmsct (3
levels: no assistance, dynamic arm, myoprocessor). A post-hoc
analysis was performed using paired t-tests to evaluate the sig-
nificant pairwise differences between each type of assistance.
For all the tests, the level of statistical significance was set at
0.05, except for post-hoc analysis, where the significance level
was chosen according to the Bonferroni correction for multiple
comparisons. Statistical analysis was conducted by using IBM
SPSS Statistics 23 (IBM, Armonk, New York, USA).

VI. RESULTS

A. Promptness or stability?

The latency between the user’s motor command (EMG
onset) and the exosuit assistance onset provides a characteri-
zation of the controller performance in terms of response time:
shorter is the time delay, better the machine moves in concert
with the human. We assessed this aspect, by observing in the
step response task, how and when the system assisted the user
against external perturbation. Fig. 4a shows a double axes plot
depicting the level of synchronization between EMG signal
and the correspondent controllers motor actuation command.

The cross-covariance between the two signals reported a value,
for this participant, of 153ms for the dynamic arm module and
63ms for the myoprocessor module.

The same analysis across all subjects is reported in Fig. 4b,
where the computational delay for the dynamic arm resulted
to be 147.86±4.95ms (mean ± SE). The myoprocessor com-
putational delay was 60.71±6.46ms. The statistical analysis
highlights a significant difference between the two modules
where the myoprocessor clearly responded faster than the dy-
namic arm module (p < 0.001). Furthermore, the myoproces-
sor computational delay is comparable to the biological time
delay between the onset of EMG activity and the mechanical
manifestation of muscle contraction for the upper limb (i.e.
electromechanical delay), which is 55.5ms according to the
literature [39]. The computational delay is also reflected into
the overall mechanical exosuit response: Fig. 4c displays the
biceps activity, the reference torque (τr(t)) and the interaction
torque (τi(t)) for a representative subject, averaged between
the 5 repetitions. When the arm is suddenly perturbed by the
falling load, the biceps contracts to counteract the external
torque (Fig. 4c, EMG peak on top plot), and at the same
instant a first peak of force is registered by the force sensor,
as shown in the plot of the interaction torque (τi(t)) for both
control modules (blue and red peaks).

The reaction of the controller modules is delayed, and
it is visible as first negative peak in the interaction torque
(τi(t)), indicated on the plots as ”response”. From an accurate
observation, the myoprocessor module seems to be faster in
the response than the dynamic arm module.

This result is further confirmed by the reference torque
(τr(t)), which represents the evaluated assistance output from
the modules, and it seems to clearly differ between controllers:
in fact while the myoprocessor, consequently to the load
application, promptly reacts with an assistance τr(t) and a
clear control effort peak is visible, the dynamic arm module
seems not able to discriminate between voluntary motion and
the perturbation, showing a τr(t) flat and visibly of opposite
sign compared to the action of the myoprocessor. This phe-
nomenon is also explained by the EMG activity on the top plot,
where the muscular activation for the dynamic arm module is
higher than the one for the myoprocessor module, meaning
that the wearer is compensating differently for the external
perturbation. Concerning the capacity of the two modules to
promptly stabilize after the external disturbance, we found that
even if the dynamic arm is slower to react, the exclusion of
biosignals from the control framework makes the reference
torque more stable and, consequently, the control algorithm
smoothly drives the interaction torque, stabilizing the system
faster than the myoprocessor (Fig. 4c, settling times).

These outcomes were statistically confirmed at the popu-
lation level: Fig. 4d and Fig. 4e show a significant differ-
ence between controller modules for both evaluated indexes
of time response and settling time: the system response
time (p < 0.001) was 0.378±0.006 s for the dynamic arm
and 0.326±0.010 s for the myoprocessor. The settling time
(p < 0.001) was 1.411±0.060 s for the dynamic arm and
1.908±0.053 s for the myoprocessor.
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Fig. 4. Step response: controller response. (a) Biceps EMG signals of a typical subject with dynamic arm (blue line) and the myoprocessor (red line)
acquired from the EMG probe. The black line represents the motor actuation command. Shaded areas show the standard deviation around the average. (b)
Overall computational delay between the biceps EMG signal and the motor actuation at the population level (red and blue bars) compared to the biological
electromechanical delay (black line, 55.5ms). (c) Biceps activity, reference torque, elbow trajectories and interaction torque of a representative subject.
Response time (d) and settling time (e) across all subjects.
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Fig. 5. Catch and throw: Power analysis. (a) Exosuit powers across all subjects during the ball throw with the dynamic arm assistance (blue line) and
myoprocessor assistance (red line). (b) Normalized human and exosuit work with respect to the total work.

B. Wearers consumes less energy with the myoprocessor

Curves of generated exosuit power are depicted in Fig. 5a,
where a quick visual inspection allows to readily extract few
clear differences between the myoprocessor and the dynamic
arm modules: during the ball throw, the device generates
more power with the myoprocessor controller, instantaneously
reacting to the requested assistance. The dynamic arm, instead,
increase its power around the 25% of the movement and the
maximum power peak remains below the myoprocessor curve.
These results are reflected in the total work: Fig. 5b reports
the human and the exosuit mechanical work at the population
level, normalized with respect to the corresponding overall
work percentage, averaged across subjects in three conditions:
without the exosuit (no assistance) and with both controllers
(dynamic arm and myoprocessor). During the dynamic arm
control 45.29 ± 7.71% of the work was made by the exosuit
(mean ± SE) and 54.71± 7.71% by the human. The situation
slightly changed when using the myoprocessor module, where
exosuit work was 68.84± 3.81% and the human contribution
was 31.16±3.81%. The work made by the exosuit resulted in
a significant difference between the two controller conditions
(p = 0.002).

C. Neither controller alters the wearers’ kinematics

Fig. 6a displays the human joints trajectory across all
participants during the catch and throw task, extracted by
feeding each subject specific Opensim model with the motion
capture data and calculating the inverse kinematics during the
no assistance, dynamic arm and myoprocessor conditions. The
shoulder flexion time series, shows a reduction of the starting
angle during the catching phase (Fig. 6a, top, left) in both
the dynamic arm and myoprocessor conditions: this is due to
the exosuit harness that partly limits the joint motion. On the
other hand, during the throwing phase, the shoulder trajectories
have similar trends across all conditions (Fig. 6a, top, right).
The elbow flexion kinematics shows comparable trajectories

in the catching phase (Fig. 6a, bottom, left) independently of
the conditions. In the final instants of the throwing movement,
however, the elbow joint is monotonically flexed when assisted
by the exosuit, while it returns to an extended position in
the no assistance condition. However, as shown in Fig. 6b-c,
the statistical analysis at the population level did not result in
significant differences in range of motion and peak velocity
of the analyzed upper limb joints.

D. Reduction of muscular effort

As a last observation on the catch and throw analysis,
we evaluated the EMG activation of the main muscles in-
volved during the task execution (Fig. 7): only the biceps
brachii showed a significant difference of its activity between
the no assistance condition and the two controller modules
(Assistance effect: F2,14 = 8.100, p = 0.005). Without the
exosuit assistance, the biceps RMS was 28.16 ± 10.36% of
the MVC (mean ± SE); with the dynamic arm control, the
muscle activity was 23.36±8.81% and with the myoprocessor
was 16.89± 7.25%. We also reported on Fig. 7b the relative
reduction between the no assistance condition and the two
controller modules, which resulted in about 17% with the
dynamic arm and 40% for myoprocessor in the catching
phase. Similar results have been found during the throw phase
with a reduction of 14% and 32% for the dynamic arm
and myoprocessor assistance respectively. However, statistical
analysis of data related to the biceps activity between the
dynamic arm and the myoprocessor conditions did not show
significant differences, hence the two controller modules can
be considered comparable in terms of performance and reduc-
tion of muscular activities during dynamic tasks execution.

We also performed an analysis of muscular activity for the
pick and place task, in which we computed the RMS for each
condition (no assistance, dynamic arm and myoprocessor) and
each load (200 g, 500 g and 1000 g) ( Fig. 8). We found
significant differences between the no assistance condition and
the dynamic arm in the anterior deltoid activity (Assistance
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Fig. 6. Catch and throw: Kinematics. (a) Joints kinematics across all subjects during the no assistance (gray line), dynamic arm (blue line) and the myoprocessor
(red line). Range of motion (b) and peak velocity (c) at the population level.

TABLE I
Pick and place: biceps and anterior deltoid activities.

effect: F2,14 = 8.54, p = 0.004; Load effect: F2,14 = 18.478,
p < 0.001; Interaction effect: F4,28 = 4.341, p = 0.007) and,
as reported both in Fig. 8b and in Tab. I, across all conditions
in the biceps activity (Assistance effect: F2,14 = 6.914,
p = 0.008; Load effect: F2,14 = 9.093, p = 0.003). The
post-hoc analysis highlighted a significant difference between
the dynamic arm and the myoprocessor across all the three
load conditions with reductions of 42%, 45% and 47%, for
the 200 g, 500 g and 1000 g respectively.

Also the anterior deltoid showed different activation patterns
across loads, as reported in Tab. I, bottom. The post-hoc
analysis highlighted the difference between the no assistance
condition and the dynamic arm by lifting 200 g and 500 g (see
Fig. 8b).

E. The myoprocessor adapts the assistance to varying dynam-
ics

The use of the two controllers modules allowed also to
accurately estimate how the net joint torque at the elbow

level was shared between the user and the exosuit during
manipulation of different loads, tested during the pick and
place task. In Fig. 8c-d, we report three torques normalized
by the participants’ mass:

– the human elbow torque, extracted from the subject
specific inverse dynamics model (OpenSim) for the no
assistance condition.

– the two interaction torques (τi), extracted from the exosuit
force sensor, for both the myoprocessor and the dynamic
arm modules.

All the values are reported on Tab. II.

TABLE II
Pick and place: measured elbow torque (Nm/kg).

The statistical analysis across all subjects showed significant
difference between the conditions (Load effect: F2,14 =
18.627, p < 0.001; Interaction effect: F4,28 = 20.085,
p < 0.001): the post-hoc analysis highlighted significant dif-
ferences between the no assistance and dynamic arm torques
for the 500 g and 1000 g conditions. We also found significant
difference between the dynamic arm and myoprocessor torques
during the maximal load condition, highlighting the capacity
of the myoprocessor to be able to modulate the assistance
depending on the load. Such an effect was not observed during
tasks executed in the dynamic arm condition.
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Fig. 7. Catch and throw: EMG analysis. (a) Muscular activities across all subjects during the no assistance (gray line), dynamic arm (blue line) and
myoprocessor conditions. (b) Muscular activities and EMG reduction at the population level.

VII. DISCUSSION

Ralph Mosher’s vision on augmenting wearable technology
is better explained in a quote defining his creation as ”...a
symbiotic unit with the alacrity of man’s information and the
control system coupled with the machine’s power ruggedness”.

Aware of the importance of the ”alacrity of man’s infor-
mation system”, we originally started the investigation in our
preliminary work [40] which posed the question on what,
between the two main control approaches in human machine
interaction, was best to interpret user’s motion and robustly
control a soft wearable actuated device.

Are biosignals really necessary to synchronize biological
and robotic motions, or could wearable devices solely rely

on internal interaction forces between the machine and the
wearer?

The scope of the current contribution was to provide the
reader, not only with two distinctive solutions to efficiently
control a soft wearable device, but also to highlight the
fundamental differences between them and characterize their
performance by proposing a new testing paradigm, across
a variety of tasks aiming at replicating functional human
interaction with the environment.

A. Synchronization between human and robotic torques

Our first hypothesis was that the myoprocessor would result
in assistive force profiles better synchronized to the activity of
the biological muscles.
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Fig. 8. Pick and place: changing in muscle activities and interaction torques. (a) Muscular activity across all subjects during the three different movements
of the pick and place task. (b) EMG activity barplots at the population level. (c) Elbow joint torque extracted from the inverse dynamic model during the
no assistance condition (gray line) vs interaction torques under the dynamic arm (blue line) and myoprocessor assistance for a representative subject. (d)
Interaction torques across all participants.

What we found (see Fig. 4b), confirms that an EMG-
driven control approach has a shorter computational delay,
in responding to the user intention, than a mechanically-
intrinsic controller, which does not contemplate biosignals
as feedback. A further verification of the high myoprocessor
promptness comes from the computational time needed for
calculating and sending out commands to the actuation unit,
which was below the physiological electromechanical delay
range (i.e 30−100ms [39]). This is, to our knowledge, the
fastest implementation approach to fill the time gap between
the dynamics of a wearable device and its wearer. The result
is comparable to our previous work [20] and to recently
published myocontrol techniques [41], [42].

To such an extent, the importance of promptness in dynamic
response is paramount in wearable device if one wants to avoid
affecting the wearer’s sense of agency, which is compromised
in presence of a delay between the user’s movement intention
and the exosuit assistance. In a seminal study on human-
machine interaction, dating back to the early days of the
field, it has been found that a machine response to the user’s
action needs to be below 100ms in order to be perceived
as “real-time” [43]. More recent studies have further shown
that even longer time lags between actions and their effects,
especially in a time range between 300 and 500ms, induces
a lower sense of agency [44]. This concept applies to the

temporal delay between actuator response and human effer-
ent signals: movement intention detection and proprioceptive
feedback seem essential to promote intuitive control and body
ownership [45]. This assumes a crucial relevance in clinical
applications where strong connection between robot and body
perception, referred as ”embodiment”, is a paramount factor
for neuromotor recovery [46]. The same concept applies, even
with a more significant effect, to other domains of assistive
robotics which require higher responsiveness and dynamic
matching between the user and the worn device: this is the case
of safety/performance augmentation in industrial wearable
robotics.
The responsiveness of controller assistance delivery was
deeply investigated in the current paper: by testing the two
proposed control schemes in a variety of tasks, we quantified
their promptness in providing torques when the wearer at-
tempts to move, accurately evaluating the actuation response
and comparing it with the physiological electromechanical
delay. Our results clearly show that both architectures provided
a minimal delay from the onset of user’s motion (147ms and
60ms for the dynamic arm and myoprocessor, respectively,
Fig. 4b), yet, physiological kinematics was preserved.
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B. Versatility in activities of daily living

Our second hypothesis was that the myoprocessor, unlike
a mechanically-intrinsic controller (dynamic arm), would be
able to discriminate external disturbances from the wearer’s
intention, and reject them in order to provide a more robust
stability.

In a scenario where a wearable robot supports a human
in unstructured daily environments there are more than just
two actors. Three entities play their roles and continuously
exchange dynamic information: the human, the exosuit and
the external environment. Although in the previous section we
tried to highlight the importance of detecting users’ movement
intention and promptly responding with assistance, yet one
must consider that, outside of a controlled lab setting, the
dualism of a human-exosuit system is immersed and subjected
to external action from the environment.
Hence, it is crucial how external dynamics, which may unpre-
dictably perturb user motion, are translated by the controller
and rejected in order to discriminate between disturbance and
desired input. Outcomes extracted from the ”step response” ex-
periment, highlighted how both controllers, were able not only
to preserve stability but also modulate the assistance to provide
comparable settling times and to reduce oscillations after the
onset of the external perturbation. On the other side, a further
observation extracted from the “catch and throw” task pro-
vided information on the dynamic bandwidth of the controllers
during fast, ballistic movements: we quantitatively analyzed
on how abrupt changes of muscular activation, consequent to
sudden impact of a heavy object with the wearer biomechanics,
are translated into mechanical assistance, and we observed
both assisted and unassisted muscular EMG patterns during
the task (Fig. 7). Surprisingly, only the assisted degree of
freedom (DoF) was influenced in its muscular activation, while
the unassisted DoFs preserved their kinematics as well as
their EMG patterns, meaning that the device assistance does
not disrupt motion synergies also in tasks requiring highly
dynamic motions.

The only solution to avoid controller misinterpretations
between internal and external dynamics is to include, in its
internal feedbacks, the user’s neural signals, hence providing
the hardware with a sensing network coordinated with the
biological counterpart, as previously proposed in [42], [47],
[48], [49]. Nevertheless, to our knowledge, no experimental
paradigms specifically designed to measure and characterize
disturbance rejection performance in controllers for soft wear-
able robotics, have been ever proposed.

By means of the such approach we have been able to
demonstrate that the myoprocessor is able to discriminate
between external and internal forces, and to successively pro-
vide a stabilizing control effort synchronous with the human
postural reactions (Fig. 4).

On the other side, the dynamic arm, due to the lack of
EMG signals in its feedback loop, initially misinterprets the
external perturbation working antagonistically to the user’s
muscles in the initial transient response. Such different per-
formances between modules in transitory responses have been
accurately quantified, demonstrating that including EMG in

assistance computation allows to better synchronize the actions
between the exosuit and the wearer, at the price of a larger
computational load due to the additional biosignals sensing,
if compared to the mechanically intrinsic controller. Despite
the dynamic arm module is unable to discriminate between
external and internal forces, missing a correct response in
the transitory regime, it shows a better capacity in stabilizing
the arm posture than the myoprocessor (see Fig. 4e) with a
difference of ≈500ms. It is worth mentioning that all the
participants, blindfolded and without knowledge about what
type of controller was driving the exosuit during the task, were
not been able to distinguish which of the two control modules
was driving the assistance. This is a further confirmation
that the controllers have comparable performances and do
not outperform each other, but rather present complementary
capacities.

C. Reduction in muscular effort

The “pick and place” task has been designed as a reinterpre-
tation of motion accuracy tested in robotics trajectory control:
in detail, we wonder if during accurate movements, the mutual
interaction between the exosuit and the wearer is consistently
kept stable and comparable performance are reached indepen-
dently on variable payloads. Negligible differences in motion
accuracy demonstrated that both control architectures are able
to smoothly assist human motion without hampering natural
kinematics.

It is worth noticing that, the dynamic arm significantly
reduced the users’s muscular activity in a higher percentage if
compared to the myoprocessor across all the load conditions:
yet the relative difference between the two control modules
(≈45% in the biceps activity) is due to variability in the
assistance provided by the myoprocessor that is dictated by
the presence of the myosignals in the loop, highly variable
depending on the load conditions. In fact, including EMG
signals in the assistance computation may results in a variable
modulation of the motor command depending on payload:
hence for light objects, the action of the myoprocessor delivers
a lower assistance when compared to the one provided by the
dynamic arm which is contrarily constant independently on
the weight of the object (Fig. 8c-d).

D. Human energy expenditure

The benefit that the user takes from the exosuit regards
not only the changes in muscular activity, but consequently
the amount of power required to achieve a specific task
characterized by a highly dynamic behaviour and involving
high motion speeds. We decided to investigate how the two
control modules transfer power to the human body during a
catch and throw task. The dynamic arm controller showed a
decrease of power with a lower part of the energy required for
the task delivered by the exosuit (Fig. 5a). This is due to the
non-adaptation at high-speed tasks, resulting in a high energy
expenditure of the human counterpart. These results confirmed
what we previously found in [21], in which we observed a
performance deterioration for increasing movement velocities,
when the dynamic arm module lacked of responsiveness to



IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021 14

fast kinematics. A further confirmation was provided by the
participants that reported a feeling with the myoprocessor
module, which, contrarily to the previous case, allowed to
release power from the wearer and transfer the major part
of the effort to the exosuit actuation, demonstrating how
in case of quick motion and prompt assistance delivery the
myoprocessor outruns the dynamic arm.

E. Setup time and practical considerations

Calibration is a natural, continuous process which runs in
background at the low level of brain motor adaptation when
a new dynamics is experienced proprioceptively.

In the wearable robotics field, the wearer and the device
need to be both to calibrate to each other and coordinate
their actions to efficiently exploit the advantage from a unified
parallel dynamic interaction [50]. In the present contribution,
we mentioned that both controllers required a subject-specific
calibration and share the same modeling layer: however, while
the dynamic arm needs anthropometric data related to subject’s
mass and limb geometry for the biomechanical model in the
loop, the myoprocessor must rely on an additional optimization
procedure to fine-tune internal parameters of its composing
blocks conditioning the EMG input signals layer. Despite the
two calibration procedures are different in terms of time, effort
and computation, it is worth to say that the dynamic arm
offers a simpler and quicker setup process compared to the
myoprocessor, making the former more suitable for ”off the
shelf” technology and applications.

For a daily scenario (i.e. assistive technology for indus-
trial settings), the myoprocessor calibration pipeline might
be considered too complex because it requires availability of
dedicated instrumentation and multiple electrodes which may
result unpractical and not reliable in a long time usage. In order
to solve this issue, previous contributions were focused on de-
veloping real-time myoelectric control optimization [51], [52]
with the aim of simplifying the initial calibration procedure
and avoiding EMG signals degradation (e.g. skin impedance
changes and muscular fatigue) to stabilize the performance of
the device for a longer use. In the rehabilitation realm, testing
controllers is somehow patient dependant in terms of perfor-
mance to properly compensate the loss of motor functions
[53]: both the controllers strongly rely on patient’s residual
motor functions to generate assistance. Hence, poor EMG
activation and/or residual voluntary motion pose a limit to
the efficacy of the proposed controllers. However, encouraging
results have been reported in mildly impaired patients for both
myoprocessor [54] and a similar dynamic arm approaches [55].

From our perspective, based on the outcomes herewith
reported and the comparative tests, we can state that the
myoprocessor and the dynamic arm have complementary
features, and can represent viable solutions for distinct task
depending applications: for example, if the assistance needs
to be modulate in real-time, like lifting different loads, a
myoprocessor-driven exosuit could provide more benefit to the
user who will have an online modulation of the assistance
level. On the other hand, if the aim is to move objects within
a specified constant range of dynamics, the dynamic arm

module can provide more stability during the assistance and
an extremely more practical setup not involving biosignals in
the loop and not necessarily requiring an accurate calibration
procedure.

The first limitation of our study is that the exosuit actuated
only a single DoF, while it has been demonstrated that
assisting a reduced number of joints may results for the other
contiguous anatomical articulations in an abnormal muscular
activation [56]. Long term effects of exoskeletons/exosuits and
related controllers currently represent an open debate which is
challenging several disciplines ranging from robotics to neu-
roergonomics and psychophysiscs. On this last aspect as well,
our current contribution lacks of ergonomic tests to validate
which between the two controllers has been perceived less
intrusive. Yet, to such an extent, we wanted to ask participants
if they were able to distinguish between the quality of the two
assistances provided by the myoprocessor or dynamic arm,
and surprisingly none of them were able to tell what controller
was used. This is also a confirmation of our results on the time
response which presented a low difference (100ms) between
the two controllers.

We may speculate that such relative time delay between
controllers intervention might result noticeable for task were
high dynamics are requested and the bandwidths of the control
modules may play a major role. However, a research paradigm
involving questionnaires and tests specifically for assessing
human factors is progressively becoming a road map which, in
our opinion, is gradually steering the aforementioned multiple
disciplines towards a common scope.

Another limitation of our proposed study concerns the
nature of the tested cohort of healthy participants, hence
the performance of the two control schemes in a clinical
setting is still an open question. Further studies should focus
on testing such performances on neurological patients (e.g.
stroke or incomplete spinal cord injury) to clearly demonstrate
that such approaches can be considered a viable option and
concretely impact wearable assistive technology. The main
target of our contribution was to provide the community with a
new experimental paradigm to test controllers in soft wearable
technology, and quantify the intrinsic different behaviours of
the two main complementary control paradigms currently in
use.

VIII. CONCLUSIONS

Despite the two control approaches offer a robust viable
option to wearable devices, their working principles result in
slightly diverse behaviours: the myoprocessor module reliably
and promptly detects the user’s movement intention, it is able
to online adapt the assistance by discriminating external per-
turbations from wearer’s intentions and consequently results
in lower muscular effort when dynamically delivering power,
in comparison to the dynamic arm module.

The advantage of using model based myoprocessing tech-
niques comes at a cost: (1) parameters tuning requires a
time-consuming calibration procedure; (2) involving biosignals
detection in the loop, it intrinsically suffers from sensitivity
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to electrodes placement, detachment and changes in skin
electrical impedance.

On the other hand, the dynamic arm controller has both its
strength and weakness in its simplicity: based on a subject
specific biomechanical model and processing mechanically
intrinsic signals, which are generally not subjected to time
degradation, it is reliable on the long run and less sensitive
to changes in biosignals’ pattern which are widely variable
across subjects.

If one envisions a large consumer technology, a ready-to-use
solution with a simple and quick setup procedure, as for the
dynamic arm, has clearly an advantage over the myoprocessor
especially in term of robustness and stable performance, even
if it results in a non-adapting assistance delivery. On the other
side, a controller including in the loop myo-signals offer a
wider range of robot-aided assistive solutions, contemplating
above all clinical applications where patient’s motion inten-
tion detection, in severe neurological scenarios, can be only
interpreted via implementation of control paradigms based on
detection of residual biosignals.
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